Frederick Gardner Cottrell

American Chemist

Frederick Gardner Cottrell was born in Oakland, California, United States on January 10th, 1877 and is the American Chemist. At the age of 71, Frederick Gardner Cottrell biography, profession, age, height, weight, eye color, hair color, build, measurements, education, career, dating/affair, family, news updates, and networth are available.

  Report
Date of Birth
January 10, 1877
Nationality
United States
Place of Birth
Oakland, California, United States
Death Date
Nov 16, 1948 (age 71)
Zodiac Sign
Capricorn
Profession
Chemist, Inventor
Frederick Gardner Cottrell Height, Weight, Eye Color and Hair Color

At 71 years old, Frederick Gardner Cottrell physical status not available right now. We will update Frederick Gardner Cottrell's height, weight, eye color, hair color, build, and measurements.

Height
Not Available
Weight
Not Available
Hair Color
Not Available
Eye Color
Not Available
Build
Not Available
Measurements
Not Available
Frederick Gardner Cottrell Religion, Education, and Hobbies
Religion
Not Available
Hobbies
Not Available
Education
University of California, Berkeley, University of Berlin, Leipzig University (PhD)
Frederick Gardner Cottrell Spouse(s), Children, Affair, Parents, and Family
Spouse(s)
Jessie Mae Fulton ​(m. 1904)​
Children
2
Dating / Affair
Not Available
Parents
Not Available
Frederick Gardner Cottrell Career

Shortly after returning to Berkeley, Cottrell began consulting for the DuPont Company at its explosives- and acids-producing facility near Pinole, California, 20 miles north of the University. DuPont wanted to address the problem of precipitating the acid mists which form when sulfur trioxide is bubbled through water or dilute sulfuric acid. Using an electrical method similar to one envisioned by Sir Oliver Lodge in England, Cottrell began experimenting with electrostatic precipitation as a means of collecting sulfuric acid mists. The result of Cottrell's work was the electrostatic precipitator, a device which could collect fly ash, dust and fumes, acid mists and fogs that spewed from turn-of-the century plants, and which became a primary means for controlling industrial air pollution. Cottrell made it work by developing a reliable high-voltage power supply and electrodes that permitted electrical energy to leak across a gas-filled chamber from many small points. In 1906, electric current was applied to a small laboratory device emitting sulfuric acid mist, and the concept became a reality. The first patent, No. 895,729, was issued on August 11, 1908. The electrostatic precipitator remains a principal technology for pollutant removal from industrial waste flows to this day.

Cottrell was not a businessman, but he recognized the business potential of his invention and decided to use it to fund scientific research through the creation of Research Corporation. In the time before science was routinely funded by government and private sources, Cottrell, at the age of 34, resolved that science would be the principal beneficiary of his invention. Those associated with him in developing electrostatic precipitation agreed with this highly unusual suggestion, and Cottrell made several attempts to donate the patent to organizations that might market the precipitator, using the proceeds to finance scientific research. After the University of California and the Smithsonian Institution declined his offer, Cottrell worked with then-Secretary of the Smithsonian Charles Doolittle Walcott, to form Research Corporation, a foundation devoted to philanthropy in science. The original board of directors—academics, scientists, lawyers and bankers—invested a total of $10,100 to fund the fledgling organization, and served without compensation. The board of directors shared Cottrell's goal of acquiring inventions and patents, developing them, making them available to industry under licensing, and applying all profits to support investigations in fundamental scientific research. Within a year, all of the Board's investments had been repaid and the precipitator business was under way. Cottrell is perhaps best known for this act of philanthropy.

Cottrell's belief in public service and his love of the environment prompted him to join the U.S. Bureau of Mines in 1911. At that time, the Bureau of Mines was the primary U.S. Government agency conducting scientific research on mineral resources. Starting out by establishing an office in San Francisco, Cottrell served the Bureau in several capacities, including that of Director in Washington, D.C. Experimental work on helium production for use in balloons and dirigibles began in 1917 at the U.S. Bureau of Mines, with Cottrell playing a vital role in making helium production financially feasible during World War I. The cost of a cubic foot of helium at that time was $1,700, making it prohibitive for use in World War I. In 1920, Cottrell's search for an inexpensive process for recovering helium from oil well gases resulted in its commercial availability at a cost as low as 1-cent per cubic foot.

In 1921, Cottrell left the Bureau of Mines to chair the Chemistry and Chemical Technology Division of the National Research Council. From 1922 to 1930, he was Director of the Fixed Nitrogen Research Laboratory at the U.S. Department of Agriculture. During his tenure, the department developed a working catalyst for a Haber-type process. Cottrell was responsible for recommending what to do with the nitrogen plant erected by the government at Muscle Shoals on the Tennessee River during World War I. After the war, production had been converted from explosives to fertilizer manufacturing and Cottrell's recommendation that the government continue to operate it as an experimental facility was ultimately incorporated in the plans for the Tennessee Valley Authority. After resigning his position with the Department of Agriculture in 1930, he remained a consultant to the department for the next decade.

As a science consultant, Dr. Cottrell was highly regarded in national and international circles, in industry and the academic community. He traveled widely, was acquainted with scientists in the U.S. and abroad, and was especially well known for his ability to identify and contribute to new ideas. Cottrell declined any role at Research Corporation as an officer or director, but remained active as an adviser for the rest of his life. Many of Research Corporation's early grants were made to scientists who Cottrell had identified as “movers and shakers” in their fields, among them Ernest O. Lawrence (the cyclotron), Isidor Rabi (nuclear magnetic resonance) and Robert Van de Graaff (the Van de Graaff generator).

Another Cottrell “brainchild” was Research Associates Inc. which was organized January 1, 1935, with 10 employees and offices on the campus of American University in Washington D.C. Funded by “grants” from Research Corporation, Research Associates represented an effort by Cottrell to create another Research Corporation which would, in time, become self-supporting through returns for its services and products. Among its projects were Brackett headlights, detergents, heat wave roasting of Fullers earth, the Greger fuel cell and Royster stoves and deodorizers.

In an obituary he wrote at the time of Cottrell's death in 1948, Vannevar Bush recalled: “The purpose of [Research Associates] was to conduct scientific and social research and to eliminate as far as possible the time lag between the perfection of scientific ideas and their introduction into the national life. The period of Research Associates’ activity, from 1935 through 1938, was a most stimulating one.”

For many reasons, the organization eventually floundered. In a letter dated September 18, 1951, J.W. Barker, then-president of Research Corporation, discussed:

“...the main problem at Research Associates, Inc.–the complete inability of this brilliant heterogeneous group of prima donnas to stick sufficiently long on any line of investigation to determine either that it would or would not work. It seemed as if the moment any particular experiment was started everyone, including Cottrell particularly, lost all interest in that experiment. Sparks began flying about some other experiment and dropping the older one without any specific determinations, off they would go after the new spark.”

Throughout his life, Cottrell had suffered periods of depression. The failure of Research Associates resulted in a long, difficult depression and marked a decline in Cottrell’s previously unbounded fervor and enthusiasm.

Cottrell’s longtime interest in nitrogen fixation prompted a collaboration with Farrington Daniels of the University of Wisconsin, beginning in 1939. Daniels and associates were trying to develop a thermal process for nitrogen fixation using a regenerative pebble-bed furnace, which they hoped would be an inexpensive alternative to the Haber ammonia synthesis. Although the project helped rejuvenate Cottrell emotionally, the development of the process was not complete until after Cottrell’s death.

By the time the United States entered World War II, Cottrell was 64 years old. His health was declining and his mind was weary. In 1944, he and Jess bought a house in Palo Alto, California and retired. Jessie Cottrell died in February 1948.

On November 16, 1948, Research Corporation’s founder, Frederick Gardner Cottrell, died while attending a meeting of the National Academy of Sciences held at his alma mater, the University of California at Berkeley.

The following obituary subsequently ran in the “Milestones” section of the November 29, 1948 issue of Time magazine:

Died. Dr. Frederick Gardner Cottrell, 71, California-born chemist and inventor (Cottrell Electrical Precipitator); of a heart ailment; in Berkeley, Calif. Dr. Cottrell founded the famed Research Corporation in 1912 as a nonprofit organization for the advancement of science, authorized it to spend the entire $3,500,000 grossed by his invention.

Although Cottrell was gone, the Foundation carried on his inspiration. In 2012, Research Corporation for Science Advancement celebrated 100 years of funding early-career teacher-scholars at America's leading colleges and universities. Shortly before his death, Cottrell said, “Bet on the youngsters. They are long shots, but some of them pay off.” His investment has financed thousands of scientific research projects, many of which have changed our world.

Source

Frederick Gardner Cottrell Awards
  • 1919 Perkin Medal of the Society of Chemical Industry
  • 1920 Willard Gibbs Medal
  • 1924 Gold Medal of the American Institute of Mining, Metallurgical, and Petroleum Engineers
  • 1937 Holley Medal of the American Society of Mechanical Engineers
  • 1938 American Institute of Chemists Gold Medal
  • 1939 National Academy of Sciences
  • 1982 Alpha Chi Sigma Hall of Fame
  • 1992 National Inventors Hall of Fame